📘
Grokking-Algorithms book
PostgreSQL
  • Content
  • Introduction to Algorithms
    • Introduction
    • Binary Search
    • Big O notation
    • Recap
  • Selection sort
    • How memory works
    • Arrays and linked lists
    • Selection sort
    • Recap
  • Recursion
    • Recursion
    • Base case and recursive case
    • The stack
    • Recap
  • Quicksort
    • Divide & conquer
    • Quicksort
    • Big O notation revisited
    • Recap
  • Hash tables
    • Hash functions
    • Use cases
    • Collisions
    • Performance
    • Recap
  • Breadth-first search
    • Introduction to graph
    • What is a graph
    • Breadth-first search
    • Implementing the graph
    • Implementing the algorithm
    • Recap
  • Dijkstra's algorithm
    • Working with Dijkstra's algorithm
    • Terminology
    • Trading for a piano
    • Negative-weight edges
    • Implementation
    • Recap
  • Greedy Algorithms
    • The classroom scheduling problem
    • The knapsack problem
    • The set-covering problem
    • NP-complete problems
    • Traveling salesperson, step by step
    • Recap
  • Dynamic programming
    • The knapsack problem
    • Knapsack problem FAQ
    • Longest common substring
    • Recap
  • K-nearest neighbors
    • Classifying oranges vs. grapefruit
    • Building a recommendations system
    • Introduction to machine learning
    • Recap
  • Where to go next
    • Trees
    • Inverted indexes
    • The Fourier transform
    • Parallel algorithms
    • MapReduce
    • Bloom filters and HyperLogLog
    • The SHA algorithms
    • Locality-sensitive hashing
    • Diffie-Hellman key exchange
    • Linear programming
    • Epilogue
  • Answers to exercises
    • Chapter 1
    • Chapter 2
    • Chapter 3
    • Chapter 4
    • Chapter 5
    • Chapter 6
    • Chapter 7
    • Chapter 8
    • Chapter 9
    • Chapter 10
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. Where to go next

Inverted indexes

PreviousTreesNextThe Fourier transform

Last updated 1 year ago

Was this helpful?

Bu erda qidiruv tizimi qanday ishlashining juda soddalashtirilgan versiyasi. Aytaylik, sizda ushbu oddiy tarkibga ega uchta veb-sahifa bor.

Keling, ushbu tarkibdan xesh jadvalini tuzamiz.

Xesh jadvalining kalitlari so'zlardir va qiymatlar har bir so'z qaysi sahifalarda paydo bo'lishini aytadi. Aytaylik, foydalanuvchi salom ni qidiradi. Keling, qaysi sahifalarda salom ko'rsatilishini ko'rib chiqaylik.

Aha: U A va B sahifalarida paydo bo'ladi. Natijada foydalanuvchiga o'sha sahifalarni ko'rsatamiz. Yoki foydalanuvchi u yerda qidiradi deylik. Bilasizmi, u A va C sahifalarida ko'rinadi. Juda oson, a? Bu foydali ma'lumotlar tuzilmasi: so'zlarni ular paydo bo'ladigan joylarga ko'rsatadigan xesh. Ushbu ma'lumotlar strukturasi teskari indeks deb ataladi va u odatda qidiruv tizimlarini yaratish uchun ishlatiladi. Agar siz qidiruvga qiziqsangiz, bu boshlash uchun yaxshi joy.

image
hash table
hi