📘
Grokking-Algorithms book
PostgreSQL
  • Content
  • Introduction to Algorithms
    • Introduction
    • Binary Search
    • Big O notation
    • Recap
  • Selection sort
    • How memory works
    • Arrays and linked lists
    • Selection sort
    • Recap
  • Recursion
    • Recursion
    • Base case and recursive case
    • The stack
    • Recap
  • Quicksort
    • Divide & conquer
    • Quicksort
    • Big O notation revisited
    • Recap
  • Hash tables
    • Hash functions
    • Use cases
    • Collisions
    • Performance
    • Recap
  • Breadth-first search
    • Introduction to graph
    • What is a graph
    • Breadth-first search
    • Implementing the graph
    • Implementing the algorithm
    • Recap
  • Dijkstra's algorithm
    • Working with Dijkstra's algorithm
    • Terminology
    • Trading for a piano
    • Negative-weight edges
    • Implementation
    • Recap
  • Greedy Algorithms
    • The classroom scheduling problem
    • The knapsack problem
    • The set-covering problem
    • NP-complete problems
    • Traveling salesperson, step by step
    • Recap
  • Dynamic programming
    • The knapsack problem
    • Knapsack problem FAQ
    • Longest common substring
    • Recap
  • K-nearest neighbors
    • Classifying oranges vs. grapefruit
    • Building a recommendations system
    • Introduction to machine learning
    • Recap
  • Where to go next
    • Trees
    • Inverted indexes
    • The Fourier transform
    • Parallel algorithms
    • MapReduce
    • Bloom filters and HyperLogLog
    • The SHA algorithms
    • Locality-sensitive hashing
    • Diffie-Hellman key exchange
    • Linear programming
    • Epilogue
  • Answers to exercises
    • Chapter 1
    • Chapter 2
    • Chapter 3
    • Chapter 4
    • Chapter 5
    • Chapter 6
    • Chapter 7
    • Chapter 8
    • Chapter 9
    • Chapter 10
Powered by GitBook
On this page

Was this helpful?

Edit on GitHub
  1. Breadth-first search

What is a graph

PreviousIntroduction to graphNextBreadth-first search

Last updated 1 year ago

Was this helpful?

Grafik ulanishlar to'plamini modellashtiradi. Misol uchun, siz va do'stlaringiz poker o'ynayapsiz deylik va siz kimga pul qarzdorligini modellashtirishni xohlaysiz. Mana shunday deyishingiz mumkin: "Aleks Ramadan qarzdor".

To'liq grafik shunday ko'rinishi mumkin

Aleks Ramadan, Tom Aditdan qarzdor va hokazo. Har bir grafik tugun va qirralardan iborat.

Hammasi shu! Grafiklar tugun va qirralardan iborat. Tugun ko'plab boshqa tugunlarga bevosita ulanishi mumkin. Bu tugunlar uning qo'shnilari deb ataladi. Ushbu grafikda Rama Aleksning qo'shnisi. Adit Aleksning qo'shnisi emas, chunki ular bevosita bog'lanmagan. Ammo Adit Rama va Tomning qo'shnisi.

Grafiklar turli xil narsalarning bir-biri bilan qanday bog'lanishini modellashtirish usulidir. Keling, birinchi navbatda kenglikdagi qidiruvni amalda ko'rib chiqaylik.

Alex owes Rama money
Graph of people who owe other people poker money
Node